Відома теорема Піфагора дає можливість побудувати відрізок - гіпотенузу, довжина якого дорівнює кореню квадратному з суми квадратів двох чисел - довжин катетів. Якщо обидва катети дорівнюють 1, тоді довжина гіпотенузи дорівнює $ \sqrt{2}$. Для катетів, довжини яких 1 та 2, гіпотенуза дорівнює $\sqrt{5}$. А як побудувати відрізки, довжини яких дорівнюють іншим значенням коренів? Такі відрізки можна відкласти за допомогою геометричних побудов, як, наприклад, на рисунку. Окрім $\sqrt{2}$ і $ \sqrt{5}$ побудовано відрізок довжиною $ \sqrt{3}$. Інший рисунок містить відрізки, довжини яких є коренями послідовних натуральних чисел від 1 до 5. А чи можна побудувати за таким принципом відрізок, довжина якого дорівнює квадратному кореню з довільного натурального числа?
Серед визначних учених і просвітників XIX ст. гідне місце посідає Віктор Якович Буняковський, видатний український математик. Народився Віктор Якович 16 (4) грудня 1804 року у м. Барі на Вінничині. Його батько підполковник Яків Васильович служив у Кінно-Польському уланському полку, який дислокувався в цьому містечку. Через чотири роки родина оселилась у Фінляндії, куди був переведений батько. У 1820 році Віктор був виряджений на навчання за кордон, де пробув шість років. У Корбурзі (Німеччина) він мав приватні уроки з математики, відвідував лекції в Лозанні та Парижі. Юнак навчався у відомих європейських вчених: Лапласа, Пуассона, Фур'є, Ампера, але найбільше враження справили на нього заняття з Коші. У 1824 році в Парижі Віктор Буняковський отримав дипломи бакалавра і ліценціата, а у травні 1825 року — ступінь доктора математики. Його дисертація складалася з двох праць: «Про розповсюдження тепла всередині твердого тіла» та «Про обертовий рух у середовищі з опоро...