Перейти до основного вмісту

Числа Фібоначчі

 Числа Фібоначчі - це числова послідовність, у якій кожне наступне число дорівнює сумі двох попередніх. Послідовність починається з 0, далі йде 1, а далі за правилом кожне неступне число дорівнює сумі двох попередніх. Послідовність має вигляд: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Послідовність є рекурентною, тобто визначена сама через себе. Формула послідовності чисел Фібоначчі: $F_n = F_{n-1} +F_{n-2}$. Числа Фібоначчі зустрічаються в природі,  мистецтві та інших сферах.  Послідовність Фібоначчі тісно пов’язана із золотим перерізом – особливою пропорцією, яку часто називають божественною. Золотий переріз виникає, коли відношення між двома частинами будь-чого дорівнює приблизно 1,618. Це число позначають символом 𝜑. Нехай маємо відрізок, що поділений на дві частини — велику a і меншу b. Відрізок буде поділений у золотому перерізі, якщо відношення довжини всього відрізка до більшої частини дорівнює відношенню більшої частини до меншої, тобто: $\frac{a+b}{a}=\frac{a}{b}=\ph...

Михайло Кравчук

Михайло Пилипович Кравчук народився 27 вересня 1892 р. в селі Човниця Ківерцівського повіту на Волині в сім'ї землеміра. 

Після закінчення із золотою медаллю гімназії в Луцьку в 1910 р. Михайло Кравчук вступає на математичне відділення фізико-математичного факультету імператорського Університету Святого Володимира в місті Києві. Уже у студентські роки він опублікував перше самостійне дослідження з теорії комутативних матриць. 
Успішно склавши магістерські іспити, Михайло Кравчук 5 вересня 1917 року прочитав свою першу (випробну) лекцію із предмету чистої математики "Про функції, що справджують теорему додавання" та лекцію з теорії множин і здобув звання приват-доцента. Він викладає математичні дисципліни в Українському народному університеті, політехнічному, архітектурному, ветеринарно-зоотехнічному та сільськогосподарському інститутах, у першій і другій українських гімназіях. У цей період М.П.Кравчук публікує свій курс лекцій з геометрії. 
У роки громадянської війни М. Кравчук виїздить в село Саварку Богуславського району, де працює з 1919 по 1921 рік директором школи та вчителем математики. 
Повернувшись до університету, М. Кравчук поринув у наукову діяльність; він отримує низку фундаментальних результатів і в 1924 році успішно захищає докторську дисертацію. У 1925 році йому було присвоєно звання професора. 
Михайло Кравчук був талановитим педагогом, серед його учнів були всесвітньо відомі у майбутньому конструктори ракетної та космічної техніки – академіки Архип Люлька, Сергій Корольов, Володимир Челомей. 
У 1929 році у віці 37-ми років вчений став наймолодшим академіком Всеукраїнської академії наук. Наступні вісім років виявилися найпліднішими у творчості Михайла Кравчука. Він успішно розвинув метод найменших квадратів у теорії наближеного інтегрування диференціальних та інтегральних рівнянь. Переважна більшість праць М. Кравчука з теорії наближеного інтегрування різних типів диференціальних рівнянь присвячені розвиткові та застосуванню методу моментів. 
У 1937 році Михайла Кравчука звинуватили в антирадянській діяльності, почалися цькування та безпідставні утиски, а в лютому 1938 р. арештували і засудили на 20 років. Навіть у нелюдських умовах таборів на Колимі вчений продовжував працювати. На жаль, результати його досліджень були знищені. 
9 березня 1942 року академіка Кравчука не стало. 
Лише у 1967–1968 рр. до 75-річчя з дня народження великого математика з'явилися перші публікації про нього. Справжнє визнання вчений отримав після здобуття Україною незалежності. У 1992 р. ім'я Михайла Кравчука було занесене ЮНЕСКО до Міжнародного календаря визначних наукових діячів. В 1992 р. відбулася перша Міжнародна наукова конференція імені Михайла Кравчука, присвячена 100-річчю з дня його народження. 
У 2001 році виявилося, що наукові результати М. Кравчука сприяли створенню першого в світі комп’ютера. 
Сьогодні в теорії цифрових фільтрів широко застосовують матриці Кравчука і многочлени Кравчука. 
На пам’ятній монеті з нагоди 120-річчя видатного математика викарбувані слова: «Моя любов – Україна і математика». Таким було кредо Михайла Кравчука.


Коментарі

Популярні дописи з цього блогу

Картопляний парадокс

 Парадокс - це твердження, яке, на перший погляд, є суперечливим, але насправді є вірне.  Сьогодні продемонструємо приклад такого парадоксу, який має назву "Картопляний парадокс". Фред приніс додому 100 кг картоплі, яка (у математичному сенсі) на 99% складається з води. Він залишає їх надворі на ніч, щоб вона трохи підсохла і на 98% складалася з води. Яка їх нова маса?  Відповідь вас здивує: нова маса – 50 кг. Доведення парадоксу: Якщо картопля на 99% складається з води, то суха маса становить 1%. Це означає, що у 100 кг картоплі міститься 1 кг сухої маси, яка не буде змінюватися внаслідок випаровування, оскільки випаровується лише вода. Для того, щоб картопля складалася з води на 98%, суха маса має становити 2% від загальної маси — удвічі більше, ніж було раніше. Кількість сухої маси 1 кг залишається незмінною, тому цього можна досягти лише шляхом зменшення загальної маси картоплі. Оскільки пропорцію сухої маси потрібно подвоїти, загальну масу картоплі потрібно зменшити ...

Арифметичні корені та їх геометричне зображення

 Відома теорема Піфагора дає можливість побудувати відрізок - гіпотенузу, довжина якого дорівнює кореню квадратному з суми квадратів двох чисел - довжин катетів. Якщо обидва катети дорівнюють 1, тоді довжина гіпотенузи дорівнює $ \sqrt{2}$. Для катетів, довжини яких 1 та 2, гіпотенуза дорівнює $\sqrt{5}$. А як побудувати відрізки, довжини яких дорівнюють іншим значенням коренів? Такі відрізки можна відкласти за допомогою геометричних побудов, як, наприклад, на рисунку. Окрім $\sqrt{2}$ і $ \sqrt{5}$ побудовано відрізок довжиною $ \sqrt{3}$. Інший рисунок містить відрізки, довжини яких є коренями послідовних натуральних чисел від 1 до 5. А чи можна побудувати за таким принципом відрізок, довжина якого дорівнює квадратному кореню з довільного натурального числа?

Тригонометрія та алгебра у стародавньому Єгипті

 Математичні знання у Стародавньому Єгипті були на високому рівні. Відомості про знання єгиптян ми отримуємо із стародавніх документів. Папірус Яхмоса або Математичний Райнд (1500 р. до н. е.) - найстаріший рукопис, що містить алгебраїчні та тригонометричні задачі. Рукопис свідчить, що єгиптяни використовували рівняння першого порядку та розв’язували їх кількома способами. Також вони знали квадратні рівняння та розв’язували їх. Їм також були відомі числові та геометричні послідовності та такі квадратні рівняння, як x 2 + y 2 = 100, y = 3/4 x, де x = 8, y = 6, Це рівняння походить від теореми Піфагора, a 2 = b 2 + c 2.  Єгиптяни також знали та використовували невідоме число у рівняннях. Цей стародавній математичний документ сьогодні зберігається у Британському музеї. Більше інформації про цей папірус можна знайти за посиланням .