Перейти до основного вмісту

Цікаві властивості об'ємів тіл обертання

 У шкільному курсі геометрії вивчають властивості тіл обертання: циліндра, конуса та кулі. Але такі фігури можуть приховувати таємниці, у які складно повірити. Про таку властивість тіл обертання розкажемо у дописі. Візьмемо правильний циліндр (висота якого дорівнює діаметру) і впишемо у нього конус і кулю. Радіус циліндра дорівнює r , а висота 2 r . Тоді об'єм вписаного конуса, радіус основи якого r , а висота 2 r , дорівнює $V_{con}=\frac{2}{3}\pi r^3$ Об'єм кулі радіуса r $V_{k}=\frac{4}{3}\pi r^3$ Якщо додамо ці формули,  то отримаємо об'єм циліндра $V_{cyl}=2\pi r^3$ Здається дивовижним, проте математично доведеним факт, що об'єм, який залишається незайнятим у циліндрі після вписання конуса, дорівнює об'єму кулі. І навпаки, незайнятий об'єм циліндра після вписання кулі дорівнює об'єму конуса.

Цікаві властивості об'ємів тіл обертання

 У шкільному курсі геометрії вивчають властивості тіл обертання: циліндра, конуса та кулі. Але такі фігури можуть приховувати таємниці, у які складно повірити. Про таку властивість тіл обертання розкажемо у дописі.

Візьмемо правильний циліндр (висота якого дорівнює діаметру) і впишемо у нього конус і кулю.


Радіус циліндра дорівнює r, а висота 2r. Тоді об'єм вписаного конуса, радіус основи якого r, а висота 2r, дорівнює

$V_{con}=\frac{2}{3}\pi r^3$

Об'єм кулі радіуса r

$V_{k}=\frac{4}{3}\pi r^3$

Якщо додамо ці формули,  то отримаємо об'єм циліндра

$V_{cyl}=2\pi r^3$

Здається дивовижним, проте математично доведеним факт, що об'єм, який залишається незайнятим у циліндрі після вписання конуса, дорівнює об'єму кулі. І навпаки, незайнятий об'єм циліндра після вписання кулі дорівнює об'єму конуса.

Коментарі

Популярні дописи з цього блогу

Число 𝛑

Число   𝛑 — математична стала, яка визначається як відношення довжини кола l до діаметра d : 𝛑   = l / d або як площа круга одиничного радіуса. Число 𝛑 є ірраціональним та записується у вигляді нескінченного десяткового дробу. Для простих розрахунків використовують декілька знаків після коми, наприклад, 3,14 або 3,1415926.  Для розрахунку міжпланетних польотів фахівці NASA використовують лише 15 знаків після коми. А якщо взяти 40 знаків, тодіможна обчислити довжину кола розміром у видимий всесвіт з точністю, що буде меншою за діаметр атома водню. Практичні обчислення числа 𝛑 здійснюють за багатьма формулами. Найвідомішими є:  формула Вієта: , формула Валліса: 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 ⋅ 8 7 ⋅ 8 9 ⋯ = � 2 , ряд Лейбніца: 1 1 − 1 3 + 1 5 − 1 7 + 1 9 − ⋯ = � 4 , формула Лейбніца: � = 4 − 8 ∑ � = 1 ∞ ( 1 ( 4 � − 1 ) ( 4 � + 1 ) ) . Більш складними є  формула Ейлера: , інтеграл Пуассона або інтеграл Гаусса: ∫ − ∞ ∞   � − � ...

Стефан Банах

  Видатний математик, представнк Львівської математичної школи, Стефан Банах зробив значний внесок у розвиток нового розділу математики - функціонального аналізу. Народився Стефан 30 березня 1892 року у Кракові. Навчався у народній школі, а потім у гімназії. Під час навчання виявляє зацікавленість математикою та приодничими науками. Після завершення навчання у 2010 році переїжджає у Львів для продовження навчання. Після переїзду вступає до Львівської політехніки на факультет будови машин, а пізніше переводиться на інженерний факультет. Проте Стефану не вдається закінчити повний курс навчання. Значний вплив на подальше життя Стефана Банаха відіграла його випадкова зустріч у 1916 році з відомим математиком того часу Гуго Штайнгаузом у Кракові, який розгледів у молодому вченому видатну особистість та розпочав співпрацю з ним. У 1920 році Стефан Банах за рекомендацією Штайнгауза був прийнятий на роботу асистентом кафедри математики Львівського університету. У 1920 році він написав докт...

Володимир Левицький

Володимир Левицький народився 31 грудня 1872 року в Тернополі у сім'ї юриста.  Коли Володимирові минуло 5 років, померла мати. Тоді родина Левицьких переїхала з Тернополя до Золочева, де у 5 з половиною років Володимир пішов до першого класу чотирирічної народної школи. 1882 року він вступив до Золочівської гімназії, в якій закінчив чотири класи. Далі Володимир навчався в Тернопільській гімназії. Саме там він обрав математику справою свого життя. Улітку 1889 року Левицькі переїхали до Львова. Тут Володимир записався до польської гімназії Франца Йозефа, яку він наступного року закінчив з відзнакою.  1890 року Володимир Левицький вступив до Львівського університету на філософський факультет, де слухав лекції з математики і фізики, самостійно читав наукові роботи видатних математиків. А 1893 р. він увійшов до складу математично-природописно-лікарської секції Наукового товариства ім. Т. Шевченка. Вже на п'ятому засіданні секції молодому випускникові університету було доручено укла...