Перейти до основного вмісту

Арифметичні корені та їх геометричне зображення

 Відома теорема Піфагора дає можливість побудувати відрізок - гіпотенузу, довжина якого дорівнює кореню квадратному з суми квадратів двох чисел - довжин катетів. Якщо обидва катети дорівнюють 1, тоді довжина гіпотенузи дорівнює $ \sqrt{2}$. Для катетів, довжини яких 1 та 2, гіпотенуза дорівнює $\sqrt{5}$. А як побудувати відрізки, довжини яких дорівнюють іншим значенням коренів? Такі відрізки можна відкласти за допомогою геометричних побудов, як, наприклад, на рисунку. Окрім $\sqrt{2}$ і $ \sqrt{5}$ побудовано відрізок довжиною $ \sqrt{3}$. Інший рисунок містить відрізки, довжини яких є коренями послідовних натуральних чисел від 1 до 5. А чи можна побудувати за таким принципом відрізок, довжина якого дорівнює квадратному кореню з довільного натурального числа?

Арифметичні корені та їх геометричне зображення

 Відома теорема Піфагора дає можливість побудувати відрізок - гіпотенузу, довжина якого дорівнює кореню квадратному з суми квадратів двох чисел - довжин катетів. Якщо обидва катети дорівнюють 1, тоді довжина гіпотенузи дорівнює $ \sqrt{2}$. Для катетів, довжини яких 1 та 2, гіпотенуза дорівнює $\sqrt{5}$. А як побудувати відрізки, довжини яких дорівнюють іншим значенням коренів?

Такі відрізки можна відкласти за допомогою геометричних побудов, як, наприклад, на рисунку.


Окрім $\sqrt{2}$ і $ \sqrt{5}$ побудовано відрізок довжиною $ \sqrt{3}$.
Інший рисунок містить відрізки, довжини яких є коренями послідовних натуральних чисел від 1 до 5.


А чи можна побудувати за таким принципом відрізок, довжина якого дорівнює квадратному кореню з довільного натурального числа?

Коментарі

Популярні дописи з цього блогу

Картопляний парадокс

 Парадокс - це твердження, яке, на перший погляд, є суперечливим, але насправді є вірне.  Сьогодні продемонструємо приклад такого парадоксу, який має назву "Картопляний парадокс". Фред приніс додому 100 кг картоплі, яка (у математичному сенсі) на 99% складається з води. Він залишає їх надворі на ніч, щоб вона трохи підсохла і на 98% складалася з води. Яка їх нова маса?  Відповідь вас здивує: нова маса – 50 кг. Доведення парадоксу: Якщо картопля на 99% складається з води, то суха маса становить 1%. Це означає, що у 100 кг картоплі міститься 1 кг сухої маси, яка не буде змінюватися внаслідок випаровування, оскільки випаровується лише вода. Для того, щоб картопля складалася з води на 98%, суха маса має становити 2% від загальної маси — удвічі більше, ніж було раніше. Кількість сухої маси 1 кг залишається незмінною, тому цього можна досягти лише шляхом зменшення загальної маси картоплі. Оскільки пропорцію сухої маси потрібно подвоїти, загальну масу картоплі потрібно зменшити ...

Цікаві властивості об'ємів тіл обертання

 У шкільному курсі геометрії вивчають властивості тіл обертання: циліндра, конуса та кулі. Але такі фігури можуть приховувати таємниці, у які складно повірити. Про таку властивість тіл обертання розкажемо у дописі. Візьмемо правильний циліндр (висота якого дорівнює діаметру) і впишемо у нього конус і кулю. Радіус циліндра дорівнює r , а висота 2 r . Тоді об'єм вписаного конуса, радіус основи якого r , а висота 2 r , дорівнює $V_{con}=\frac{2}{3}\pi r^3$ Об'єм кулі радіуса r $V_{k}=\frac{4}{3}\pi r^3$ Якщо додамо ці формули,  то отримаємо об'єм циліндра $V_{cyl}=2\pi r^3$ Здається дивовижним, проте математично доведеним факт, що об'єм, який залишається незайнятим у циліндрі після вписання конуса, дорівнює об'єму кулі. І навпаки, незайнятий об'єм циліндра після вписання кулі дорівнює об'єму конуса.

Цікаві задачі

  Задача 6.  Півкруги рівні між собою. Знайдіть їх діаметр.