Перейти до основного вмісту

Числа Фібоначчі

 Числа Фібоначчі - це числова послідовність, у якій кожне наступне число дорівнює сумі двох попередніх. Послідовність починається з 0, далі йде 1, а далі за правилом кожне неступне число дорівнює сумі двох попередніх. Послідовність має вигляд: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Послідовність є рекурентною, тобто визначена сама через себе. Формула послідовності чисел Фібоначчі: $F_n = F_{n-1} +F_{n-2}$. Числа Фібоначчі зустрічаються в природі,  мистецтві та інших сферах.  Послідовність Фібоначчі тісно пов’язана із золотим перерізом – особливою пропорцією, яку часто називають божественною. Золотий переріз виникає, коли відношення між двома частинами будь-чого дорівнює приблизно 1,618. Це число позначають символом 𝜑. Нехай маємо відрізок, що поділений на дві частини — велику a і меншу b. Відрізок буде поділений у золотому перерізі, якщо відношення довжини всього відрізка до більшої частини дорівнює відношенню більшої частини до меншої, тобто: $\frac{a+b}{a}=\frac{a}{b}=\ph...

Числа Фібоначчі

 Числа Фібоначчі - це числова послідовність, у якій кожне наступне число дорівнює сумі двох попередніх.

Послідовність починається з 0, далі йде 1, а далі за правилом кожне неступне число дорівнює сумі двох попередніх.

Послідовність має вигляд:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...

Послідовність є рекурентною, тобто визначена сама через себе. Формула послідовності чисел Фібоначчі:

$F_n = F_{n-1} +F_{n-2}$.

Числа Фібоначчі зустрічаються в природі,  мистецтві та інших сферах. 


Послідовність Фібоначчі тісно пов’язана із золотим перерізом – особливою пропорцією, яку часто називають божественною. Золотий переріз виникає, коли відношення між двома частинами будь-чого дорівнює приблизно 1,618. Це число позначають символом 𝜑.

Нехай маємо відрізок, що поділений на дві частини — велику a і меншу b. Відрізок буде поділений у золотому перерізі, якщо відношення довжини всього відрізка до більшої частини дорівнює відношенню більшої частини до меншої, тобто:

$\frac{a+b}{a}=\frac{a}{b}=\phi$.

Якщо поділити число Фібоначчі не попереднє, то отримаємо частку, яка приблизно дорівнює величині 1,618, тобто золотому перерізу.


Числа Фібоначчі найчастіше зустрічаються у природі. 

Вигляд спіралі Фібоначчі з дотриманням відповідних відношень є у мушлях молюсків.



Іншим прикладо чисел фібоначчі є форма соняшника,

Такі ж спіралі є на шишках хвойних дерев, а також у галактиках.
У горах Карпатах з числами Фібоначчі пов'язані ялини, гілки яких ростуть по спіралі Фібоначчі - те саме співвідношення, що в соняшнику чи равлику. Кожна гілочка розташована під кутом приблизно 137,5° до попередньої. Це виявляється є найефективнішим способом отримати максимум сонячного світла.
Вперше відкрив ці чудові числа Леонардо Пізанський, відомий як Фібоначчі. Він народився близько 1170 року в італійському місті Піза. Його прізвисько пішло від імені батька — Гульєльмо Боначчі, а згодом і його творіння отримало відповідну назву.
Фібоначчі відіграв важливу роль у розвитку математики і науки, впроваджуючи арабсько-індійську математичну арифметику та алгебру в Європі. Одним із його вагомих досягнень стала книга «Liber Abaci» (1202 рік), у якій він представив західному світу індо-арабські числа і методи обчислень, а також послідовність чисел, відому як послідовність Фібоначчі.
Числа Фібоначчі застосовують для економічного аналізу ринків, а також у інших галузях, зокрема мистецтві, музиці, програмуванні та криптографії.
За допомогою чисел Фібоначчі оптимізують програми і дані. У криптографії код Фібоначчі застсовують для створення захищених алгоритмів шифрування і дешифрування даних. Його включають до складу різних криптографічних протоколів для забезпечення безпеки передавання даних і аутентифікації користувачів.
За допомогою чисел Фібоначчі моделюють часові ряди, здійснюють прогнозування. Їх також використовують для створення гармонійних і пропорційних композицій, текстур і зображень, наприклад, для створення фільтрів, ефектів і алгоритмів обробки зображень.
Загалом числа Фібоначчі є важливими та потребують глибших досліджень у інших галузях.



Коментарі

Популярні дописи з цього блогу

Картопляний парадокс

 Парадокс - це твердження, яке, на перший погляд, є суперечливим, але насправді є вірне.  Сьогодні продемонструємо приклад такого парадоксу, який має назву "Картопляний парадокс". Фред приніс додому 100 кг картоплі, яка (у математичному сенсі) на 99% складається з води. Він залишає їх надворі на ніч, щоб вона трохи підсохла і на 98% складалася з води. Яка їх нова маса?  Відповідь вас здивує: нова маса – 50 кг. Доведення парадоксу: Якщо картопля на 99% складається з води, то суха маса становить 1%. Це означає, що у 100 кг картоплі міститься 1 кг сухої маси, яка не буде змінюватися внаслідок випаровування, оскільки випаровується лише вода. Для того, щоб картопля складалася з води на 98%, суха маса має становити 2% від загальної маси — удвічі більше, ніж було раніше. Кількість сухої маси 1 кг залишається незмінною, тому цього можна досягти лише шляхом зменшення загальної маси картоплі. Оскільки пропорцію сухої маси потрібно подвоїти, загальну масу картоплі потрібно зменшити ...

Арифметичні корені та їх геометричне зображення

 Відома теорема Піфагора дає можливість побудувати відрізок - гіпотенузу, довжина якого дорівнює кореню квадратному з суми квадратів двох чисел - довжин катетів. Якщо обидва катети дорівнюють 1, тоді довжина гіпотенузи дорівнює $ \sqrt{2}$. Для катетів, довжини яких 1 та 2, гіпотенуза дорівнює $\sqrt{5}$. А як побудувати відрізки, довжини яких дорівнюють іншим значенням коренів? Такі відрізки можна відкласти за допомогою геометричних побудов, як, наприклад, на рисунку. Окрім $\sqrt{2}$ і $ \sqrt{5}$ побудовано відрізок довжиною $ \sqrt{3}$. Інший рисунок містить відрізки, довжини яких є коренями послідовних натуральних чисел від 1 до 5. А чи можна побудувати за таким принципом відрізок, довжина якого дорівнює квадратному кореню з довільного натурального числа?

Тригонометрія та алгебра у стародавньому Єгипті

 Математичні знання у Стародавньому Єгипті були на високому рівні. Відомості про знання єгиптян ми отримуємо із стародавніх документів. Папірус Яхмоса або Математичний Райнд (1500 р. до н. е.) - найстаріший рукопис, що містить алгебраїчні та тригонометричні задачі. Рукопис свідчить, що єгиптяни використовували рівняння першого порядку та розв’язували їх кількома способами. Також вони знали квадратні рівняння та розв’язували їх. Їм також були відомі числові та геометричні послідовності та такі квадратні рівняння, як x 2 + y 2 = 100, y = 3/4 x, де x = 8, y = 6, Це рівняння походить від теореми Піфагора, a 2 = b 2 + c 2.  Єгиптяни також знали та використовували невідоме число у рівняннях. Цей стародавній математичний документ сьогодні зберігається у Британському музеї. Більше інформації про цей папірус можна знайти за посиланням .