Перейти до основного вмісту

Числа Фібоначчі

 Числа Фібоначчі - це числова послідовність, у якій кожне наступне число дорівнює сумі двох попередніх. Послідовність починається з 0, далі йде 1, а далі за правилом кожне неступне число дорівнює сумі двох попередніх. Послідовність має вигляд: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Послідовність є рекурентною, тобто визначена сама через себе. Формула послідовності чисел Фібоначчі: $F_n = F_{n-1} +F_{n-2}$. Числа Фібоначчі зустрічаються в природі,  мистецтві та інших сферах.  Послідовність Фібоначчі тісно пов’язана із золотим перерізом – особливою пропорцією, яку часто називають божественною. Золотий переріз виникає, коли відношення між двома частинами будь-чого дорівнює приблизно 1,618. Це число позначають символом 𝜑. Нехай маємо відрізок, що поділений на дві частини — велику a і меншу b. Відрізок буде поділений у золотому перерізі, якщо відношення довжини всього відрізка до більшої частини дорівнює відношенню більшої частини до меншої, тобто: $\frac{a+b}{a}=\frac{a}{b}=\ph...

Стефан Банах

 


Видатний математик, представнк Львівської математичної школи, Стефан Банах зробив значний внесок у розвиток нового розділу математики - функціонального аналізу.

Народився Стефан 30 березня 1892 року у Кракові. Навчався у народній школі, а потім у гімназії. Під час навчання виявляє зацікавленість математикою та приодничими науками. Після завершення навчання у 2010 році переїжджає у Львів для продовження навчання.
Після переїзду вступає до Львівської політехніки на факультет будови машин, а пізніше переводиться на інженерний факультет. Проте Стефану не вдається закінчити повний курс навчання.
Значний вплив на подальше життя Стефана Банаха відіграла його випадкова зустріч у 1916 році з відомим математиком того часу Гуго Штайнгаузом у Кракові, який розгледів у молодому вченому видатну особистість та розпочав співпрацю з ним.
У 1920 році Стефан Банах за рекомендацією Штайнгауза був прийнятий на роботу асистентом кафедри математики Львівського університету. У 1920 році він написав докторську працю, присвячену інтегральним рівнянням і теорії множин, яку успішно захистив та отримав ступінь доктора наук у 1921 році. З 1922 року Стефан Банах стає надзвичайним професором, а у 1927 році - надзвичайним професором. Це був унікальний випадок, оскільки Стефан не мав диплома про вищу освіту.
У 1939 році вчений очолив кафедру аналізу Львівського університету. Проте війна, яка розпочалася у 1941 році, призвела до зупинки роботи університету. Заробляючи на життя, Стефан Банах погодився на участь у медичних експериментах із створення вакцини проти тифу.
У 1944 році університет відновив роботу і Стефан Банах продовжив математичну діяльність. Проте важка хвороба не дала завершити задуми. Помер видатний вчений 31 серпня 1945 року.
Діяльність Стефана Банаха у галузі математики призвела до стоворення нового розділу - функціонального аналізу. Він співпрацював з іншими видатними вченими того часу. Монографії та статті Стефана Банаха публікувалися у відомих математичних журналах. Найвідомішою його науковою працею став «Шкотська книга» - збірка математичних проблем, записаних під час зустрічей математиків у Шкотській кав’ярні у Львові на вулиці Академічній (тепер Проспект Т. Шевченка). Результати досліджень Стефана Банаха стали класичними і входять до змісту підручників та монографій з функціонального аналізу. Його праці відомі й у галузях диференціальних рівнянь та теорії функцій комплексної змінної. Іменем Стефана Банаха названі банахові простори та банахова алгебра.


Коментарі

Популярні дописи з цього блогу

Картопляний парадокс

 Парадокс - це твердження, яке, на перший погляд, є суперечливим, але насправді є вірне.  Сьогодні продемонструємо приклад такого парадоксу, який має назву "Картопляний парадокс". Фред приніс додому 100 кг картоплі, яка (у математичному сенсі) на 99% складається з води. Він залишає їх надворі на ніч, щоб вона трохи підсохла і на 98% складалася з води. Яка їх нова маса?  Відповідь вас здивує: нова маса – 50 кг. Доведення парадоксу: Якщо картопля на 99% складається з води, то суха маса становить 1%. Це означає, що у 100 кг картоплі міститься 1 кг сухої маси, яка не буде змінюватися внаслідок випаровування, оскільки випаровується лише вода. Для того, щоб картопля складалася з води на 98%, суха маса має становити 2% від загальної маси — удвічі більше, ніж було раніше. Кількість сухої маси 1 кг залишається незмінною, тому цього можна досягти лише шляхом зменшення загальної маси картоплі. Оскільки пропорцію сухої маси потрібно подвоїти, загальну масу картоплі потрібно зменшити ...

Арифметичні корені та їх геометричне зображення

 Відома теорема Піфагора дає можливість побудувати відрізок - гіпотенузу, довжина якого дорівнює кореню квадратному з суми квадратів двох чисел - довжин катетів. Якщо обидва катети дорівнюють 1, тоді довжина гіпотенузи дорівнює $ \sqrt{2}$. Для катетів, довжини яких 1 та 2, гіпотенуза дорівнює $\sqrt{5}$. А як побудувати відрізки, довжини яких дорівнюють іншим значенням коренів? Такі відрізки можна відкласти за допомогою геометричних побудов, як, наприклад, на рисунку. Окрім $\sqrt{2}$ і $ \sqrt{5}$ побудовано відрізок довжиною $ \sqrt{3}$. Інший рисунок містить відрізки, довжини яких є коренями послідовних натуральних чисел від 1 до 5. А чи можна побудувати за таким принципом відрізок, довжина якого дорівнює квадратному кореню з довільного натурального числа?

Тригонометрія та алгебра у стародавньому Єгипті

 Математичні знання у Стародавньому Єгипті були на високому рівні. Відомості про знання єгиптян ми отримуємо із стародавніх документів. Папірус Яхмоса або Математичний Райнд (1500 р. до н. е.) - найстаріший рукопис, що містить алгебраїчні та тригонометричні задачі. Рукопис свідчить, що єгиптяни використовували рівняння першого порядку та розв’язували їх кількома способами. Також вони знали квадратні рівняння та розв’язували їх. Їм також були відомі числові та геометричні послідовності та такі квадратні рівняння, як x 2 + y 2 = 100, y = 3/4 x, де x = 8, y = 6, Це рівняння походить від теореми Піфагора, a 2 = b 2 + c 2.  Єгиптяни також знали та використовували невідоме число у рівняннях. Цей стародавній математичний документ сьогодні зберігається у Британському музеї. Більше інформації про цей папірус можна знайти за посиланням .