Processing math: 0%
Перейти до основного вмісту

Цікаві властивості об'ємів тіл обертання

 У шкільному курсі геометрії вивчають властивості тіл обертання: циліндра, конуса та кулі. Але такі фігури можуть приховувати таємниці, у які складно повірити. Про таку властивість тіл обертання розкажемо у дописі. Візьмемо правильний циліндр (висота якого дорівнює діаметру) і впишемо у нього конус і кулю. Радіус циліндра дорівнює r , а висота 2 r . Тоді об'єм вписаного конуса, радіус основи якого r , а висота 2 r , дорівнює V_{con}=\frac{2}{3}\pi r^3 Об'єм кулі радіуса r V_{k}=\frac{4}{3}\pi r^3 Якщо додамо ці формули,  то отримаємо об'єм циліндра V_{cyl}=2\pi r^3 Здається дивовижним, проте математично доведеним факт, що об'єм, який залишається незайнятим у циліндрі після вписання конуса, дорівнює об'єму кулі. І навпаки, незайнятий об'єм циліндра після вписання кулі дорівнює об'єму конуса.

Японський метод множення

Множення чисел можна виконувати різними методами: усно, в стовпчик, за допомогою калькулятора... Але відомий ще один дуже цікавий метод, винайдений у Японії, який базується на графіці. Для отримання добутку потрібно побудувати декілька ліні, полічити точки їх перетину і записати результат. Пояснимо його на прикладі.

Нехай потрібно знайти добуток чисел 12 і 32. Число 12 містить 1 десяток і 2 одиниці, а 32 - 3 десятки і 2 одиниці. Зобразимо число 12 трьома лініями, проведеними під кутом зверху до низу, що відповідають 1 десятку та 2 одиницям.


А число 32 зобразимо під іншим кутом та знизу до верху п'ятьма лініями: 3 за числом десятків і 2 за кількістю одиниць.

Тепер порахуємо точки перетину ліній.

Згпупувавши точки перетину та просумувавши їх кількості в групах, можемо записати результат множення.

Таким чином, отримуємо, що добутком 12 і 32 є 384.

Здається дивовижним, навіть магічним, проте японський метод множення має чітке математичне пояснення. Він базується на сумуванні добутків одиниць та десятків. Спочатку перемножимо одиниці: 

2 одиниці х 2 одиниці = 4 одиниці.

Потім перемножимо десятки одного числа та одиниці іншого: 

1 десяток х 2 одиниці = 2 десятки = 20

і 

3 десятки х 2 одиниці = 6 десятків = 60.

Нарешті перемножимо десятки кожного з чисел: 

1 десяток х 3 десятки = 3 сотні = 300.

Таким чином, додавши результати множення розрядів чисел, отримаємо добуток.


Якщо число одиниць буде більше або рівне 10, тоді, як і у звичайному множенні в стовпчик, переносимо одиницю у вищий розряд - десятки, а залишок залишаємо в одиницях. Наступний приклад це ілюструє.

Таким же чином діємо, якщо число десятків буде 10 або більше.

Наведений метод ще раз підтверджує відомий принцип математики: 

Методів розв'язування задачі може бути багато, а результат - один











Коментарі

Популярні дописи з цього блогу

Цікаві задачі

  Задача 6.  Півкруги рівні між собою. Знайдіть їх діаметр.

Значення тригонометричних функцій

Усім відомі таблиці значень тригонометричних функцій кутів від 0° до 90°. Їх нескладно запам'ятати. Однак можна використати і прості формули значень синуса та косинуса цих кутів. Використовувати формули можна за допомогою пальців руки.  Розташуємо руку так, щоб мізинець співпадав з напрямком осі Ох, а великий палець - з напрямком осі Оу.  Обчислення значень синусів і косинусів кутів 0°, 30°, 45°, 60° та 90° проводять за тією ж формулою: sin{ \alpha} (cos{\alpha}) =\frac{\sqrt{N}}{4}, де N - номери пальців. Для синуса нумерація починається з 0 - мізинець (0°), 1 - підмізинний палець (30°),  2 - середній палець (45°),  3 - вказівний палець (60°), 4 - великий палець (90°).  Для косинуса - навпаки: 0 - великий палець (90°), 1 - вказівний палець (60°), 2 - середній палець (45°), 3 - підмізинний палець (30°), 4 - мізинець (0°). Знаючи формули, можна легко записати таблицю значень тригонометричних функцій або обчислити їх значення для кутів  0°, 30°, 45°, 60°...

Стефан Банах

  Видатний математик, представнк Львівської математичної школи, Стефан Банах зробив значний внесок у розвиток нового розділу математики - функціонального аналізу. Народився Стефан 30 березня 1892 року у Кракові. Навчався у народній школі, а потім у гімназії. Під час навчання виявляє зацікавленість математикою та приодничими науками. Після завершення навчання у 2010 році переїжджає у Львів для продовження навчання. Після переїзду вступає до Львівської політехніки на факультет будови машин, а пізніше переводиться на інженерний факультет. Проте Стефану не вдається закінчити повний курс навчання. Значний вплив на подальше життя Стефана Банаха відіграла його випадкова зустріч у 1916 році з відомим математиком того часу Гуго Штайнгаузом у Кракові, який розгледів у молодому вченому видатну особистість та розпочав співпрацю з ним. У 1920 році Стефан Банах за рекомендацією Штайнгауза був прийнятий на роботу асистентом кафедри математики Львівського університету. У 1920 році він написав докт...