Перейти до основного вмісту

Картопляний парадокс

 Парадокс - це твердження, яке, на перший погляд, є суперечливим, але насправді є вірне.  Сьогодні продемонструємо приклад такого парадоксу, який має назву "Картопляний парадокс". Фред приніс додому 100 кг картоплі, яка (у математичному сенсі) на 99% складається з води. Він залишає їх надворі на ніч, щоб вона трохи підсохла і на 98% складалася з води. Яка їх нова маса?  Відповідь вас здивує: нова маса – 50 кг. Доведення парадоксу: Якщо картопля на 99% складається з води, то суха маса становить 1%. Це означає, що у 100 кг картоплі міститься 1 кг сухої маси, яка не буде змінюватися внаслідок випаровування, оскільки випаровується лише вода. Для того, щоб картопля складалася з води на 98%, суха маса має становити 2% від загальної маси — удвічі більше, ніж було раніше. Кількість сухої маси 1 кг залишається незмінною, тому цього можна досягти лише шляхом зменшення загальної маси картоплі. Оскільки пропорцію сухої маси потрібно подвоїти, загальну масу картоплі потрібно зменшити ...

Японський метод множення

Множення чисел можна виконувати різними методами: усно, в стовпчик, за допомогою калькулятора... Але відомий ще один дуже цікавий метод, винайдений у Японії, який базується на графіці. Для отримання добутку потрібно побудувати декілька ліні, полічити точки їх перетину і записати результат. Пояснимо його на прикладі.

Нехай потрібно знайти добуток чисел 12 і 32. Число 12 містить 1 десяток і 2 одиниці, а 32 - 3 десятки і 2 одиниці. Зобразимо число 12 трьома лініями, проведеними під кутом зверху до низу, що відповідають 1 десятку та 2 одиницям.


А число 32 зобразимо під іншим кутом та знизу до верху п'ятьма лініями: 3 за числом десятків і 2 за кількістю одиниць.

Тепер порахуємо точки перетину ліній.

Згпупувавши точки перетину та просумувавши їх кількості в групах, можемо записати результат множення.

Таким чином, отримуємо, що добутком 12 і 32 є 384.

Здається дивовижним, навіть магічним, проте японський метод множення має чітке математичне пояснення. Він базується на сумуванні добутків одиниць та десятків. Спочатку перемножимо одиниці: 

2 одиниці х 2 одиниці = 4 одиниці.

Потім перемножимо десятки одного числа та одиниці іншого: 

1 десяток х 2 одиниці = 2 десятки = 20

і 

3 десятки х 2 одиниці = 6 десятків = 60.

Нарешті перемножимо десятки кожного з чисел: 

1 десяток х 3 десятки = 3 сотні = 300.

Таким чином, додавши результати множення розрядів чисел, отримаємо добуток.


Якщо число одиниць буде більше або рівне 10, тоді, як і у звичайному множенні в стовпчик, переносимо одиницю у вищий розряд - десятки, а залишок залишаємо в одиницях. Наступний приклад це ілюструє.

Таким же чином діємо, якщо число десятків буде 10 або більше.

Наведений метод ще раз підтверджує відомий принцип математики: 

Методів розв'язування задачі може бути багато, а результат - один











Коментарі

Популярні дописи з цього блогу

Картопляний парадокс

 Парадокс - це твердження, яке, на перший погляд, є суперечливим, але насправді є вірне.  Сьогодні продемонструємо приклад такого парадоксу, який має назву "Картопляний парадокс". Фред приніс додому 100 кг картоплі, яка (у математичному сенсі) на 99% складається з води. Він залишає їх надворі на ніч, щоб вона трохи підсохла і на 98% складалася з води. Яка їх нова маса?  Відповідь вас здивує: нова маса – 50 кг. Доведення парадоксу: Якщо картопля на 99% складається з води, то суха маса становить 1%. Це означає, що у 100 кг картоплі міститься 1 кг сухої маси, яка не буде змінюватися внаслідок випаровування, оскільки випаровується лише вода. Для того, щоб картопля складалася з води на 98%, суха маса має становити 2% від загальної маси — удвічі більше, ніж було раніше. Кількість сухої маси 1 кг залишається незмінною, тому цього можна досягти лише шляхом зменшення загальної маси картоплі. Оскільки пропорцію сухої маси потрібно подвоїти, загальну масу картоплі потрібно зменшити ...

Цікаві задачі

  Задача 6.  Півкруги рівні між собою. Знайдіть їх діаметр.

Цікаві властивості об'ємів тіл обертання

 У шкільному курсі геометрії вивчають властивості тіл обертання: циліндра, конуса та кулі. Але такі фігури можуть приховувати таємниці, у які складно повірити. Про таку властивість тіл обертання розкажемо у дописі. Візьмемо правильний циліндр (висота якого дорівнює діаметру) і впишемо у нього конус і кулю. Радіус циліндра дорівнює r , а висота 2 r . Тоді об'єм вписаного конуса, радіус основи якого r , а висота 2 r , дорівнює $V_{con}=\frac{2}{3}\pi r^3$ Об'єм кулі радіуса r $V_{k}=\frac{4}{3}\pi r^3$ Якщо додамо ці формули,  то отримаємо об'єм циліндра $V_{cyl}=2\pi r^3$ Здається дивовижним, проте математично доведеним факт, що об'єм, який залишається незайнятим у циліндрі після вписання конуса, дорівнює об'єму кулі. І навпаки, незайнятий об'єм циліндра після вписання кулі дорівнює об'єму конуса.