Перейти до основного вмісту

Картопляний парадокс

 Парадокс - це твердження, яке, на перший погляд, є суперечливим, але насправді є вірне.  Сьогодні продемонструємо приклад такого парадоксу, який має назву "Картопляний парадокс". Фред приніс додому 100 кг картоплі, яка (у математичному сенсі) на 99% складається з води. Він залишає їх надворі на ніч, щоб вона трохи підсохла і на 98% складалася з води. Яка їх нова маса?  Відповідь вас здивує: нова маса – 50 кг. Доведення парадоксу: Якщо картопля на 99% складається з води, то суха маса становить 1%. Це означає, що у 100 кг картоплі міститься 1 кг сухої маси, яка не буде змінюватися внаслідок випаровування, оскільки випаровується лише вода. Для того, щоб картопля складалася з води на 98%, суха маса має становити 2% від загальної маси — удвічі більше, ніж було раніше. Кількість сухої маси 1 кг залишається незмінною, тому цього можна досягти лише шляхом зменшення загальної маси картоплі. Оскільки пропорцію сухої маси потрібно подвоїти, загальну масу картоплі потрібно зменшити ...

Марина В'язовська


Українка Марина В'язовська - друга жінка, що отримала престижну премію Філдса за розв'язання задачі, над якою роздумували ще Кеплер і Ньютон. Вручення відбулося 5 липня 2022 року. 
Марина В’язовська народилася в Києві в 1984 році, навчалась на механіко-математичному факультеті Київського національного університету імені Шевченка, у 2007 році отримала ступінь магістра у німецькому Кайзерслаутерні, а в 2013 року - ступінь доктора природничих наук у Боннському університеті. З 2017 року працює в Федеральній політехнічній школі Лозанни, у 2018 році отримала посаду професора, очолює кафедру теорії чисел.

Задача про пакування куль

Отримано розв'язок задачі про пакування куль у восьмивимірному просторі, відомої ще з 16 століття. Початково вона була пов'язана з військовою необхідністю придумати найбільш ефективний спосіб укладання гарматних ядер на кораблях британського військового флоту.

У подальшому задача потрапила до списку з 23 невирішених математичних задач. Про її розв'язання дискутували такі відомі науковці, як Йоган Кеплер та Ісаак Ньютон.

Типова задача пакування куль у тривимірному просторі полягає в тому, щоб знайти розташування, за якого вони заповнюють якомога більший простір. Частка простору, заповненого кулями, називається щільністю пакування. Оскільки локальна щільність пакування в нескінченному просторі може змінюватися залежно від об’єму, у якому вона вимірюється, проблема зазвичай полягає в тому, щоб максимізувати середню або асимптотичну щільність, виміряну у достатньо великому об’ємі.

Для куль однакового діаметру у трьох вимірах найщільніше пакування займає приблизно 74% об’єму. Випадкове пакування однакових куль зазвичай має щільність близько 63,5%.

Коментарі

Популярні дописи з цього блогу

Картопляний парадокс

 Парадокс - це твердження, яке, на перший погляд, є суперечливим, але насправді є вірне.  Сьогодні продемонструємо приклад такого парадоксу, який має назву "Картопляний парадокс". Фред приніс додому 100 кг картоплі, яка (у математичному сенсі) на 99% складається з води. Він залишає їх надворі на ніч, щоб вона трохи підсохла і на 98% складалася з води. Яка їх нова маса?  Відповідь вас здивує: нова маса – 50 кг. Доведення парадоксу: Якщо картопля на 99% складається з води, то суха маса становить 1%. Це означає, що у 100 кг картоплі міститься 1 кг сухої маси, яка не буде змінюватися внаслідок випаровування, оскільки випаровується лише вода. Для того, щоб картопля складалася з води на 98%, суха маса має становити 2% від загальної маси — удвічі більше, ніж було раніше. Кількість сухої маси 1 кг залишається незмінною, тому цього можна досягти лише шляхом зменшення загальної маси картоплі. Оскільки пропорцію сухої маси потрібно подвоїти, загальну масу картоплі потрібно зменшити ...

Цікаві задачі

  Задача 6.  Півкруги рівні між собою. Знайдіть їх діаметр.

Цікаві властивості об'ємів тіл обертання

 У шкільному курсі геометрії вивчають властивості тіл обертання: циліндра, конуса та кулі. Але такі фігури можуть приховувати таємниці, у які складно повірити. Про таку властивість тіл обертання розкажемо у дописі. Візьмемо правильний циліндр (висота якого дорівнює діаметру) і впишемо у нього конус і кулю. Радіус циліндра дорівнює r , а висота 2 r . Тоді об'єм вписаного конуса, радіус основи якого r , а висота 2 r , дорівнює $V_{con}=\frac{2}{3}\pi r^3$ Об'єм кулі радіуса r $V_{k}=\frac{4}{3}\pi r^3$ Якщо додамо ці формули,  то отримаємо об'єм циліндра $V_{cyl}=2\pi r^3$ Здається дивовижним, проте математично доведеним факт, що об'єм, який залишається незайнятим у циліндрі після вписання конуса, дорівнює об'єму кулі. І навпаки, незайнятий об'єм циліндра після вписання кулі дорівнює об'єму конуса.