Числа Фібоначчі - це числова послідовність, у якій кожне наступне число дорівнює сумі двох попередніх. Послідовність починається з 0, далі йде 1, а далі за правилом кожне неступне число дорівнює сумі двох попередніх. Послідовність має вигляд: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Послідовність є рекурентною, тобто визначена сама через себе. Формула послідовності чисел Фібоначчі: $F_n = F_{n-1} +F_{n-2}$. Числа Фібоначчі зустрічаються в природі, мистецтві та інших сферах. Послідовність Фібоначчі тісно пов’язана із золотим перерізом – особливою пропорцією, яку часто називають божественною. Золотий переріз виникає, коли відношення між двома частинами будь-чого дорівнює приблизно 1,618. Це число позначають символом 𝜑. Нехай маємо відрізок, що поділений на дві частини — велику a і меншу b. Відрізок буде поділений у золотому перерізі, якщо відношення довжини всього відрізка до більшої частини дорівнює відношенню більшої частини до меншої, тобто: $\frac{a+b}{a}=\frac{a}{b}=\ph...
Українка Марина В'язовська - друга жінка, що отримала престижну премію Філдса за розв'язання задачі, над якою роздумували ще Кеплер і Ньютон. Вручення відбулося 5 липня 2022 року.
Марина В’язовська народилася в Києві в 1984 році, навчалась на механіко-математичному факультеті Київського національного університету імені Шевченка, у 2007 році отримала ступінь магістра у німецькому Кайзерслаутерні, а в 2013 року - ступінь доктора природничих наук у Боннському університеті. З 2017 року працює в Федеральній політехнічній школі Лозанни, у 2018 році отримала посаду професора, очолює кафедру теорії чисел.
Задача про пакування куль
Отримано розв'язок задачі про пакування куль у восьмивимірному просторі, відомої ще з 16 століття. Початково вона була пов'язана з військовою необхідністю придумати найбільш ефективний спосіб укладання гарматних ядер на кораблях британського військового флоту.
У подальшому задача потрапила до списку з 23 невирішених математичних задач. Про її розв'язання дискутували такі відомі науковці, як Йоган Кеплер та Ісаак Ньютон.
Типова задача пакування куль у тривимірному просторі полягає в тому, щоб знайти розташування, за якого вони заповнюють якомога більший простір. Частка простору, заповненого кулями, називається щільністю пакування. Оскільки локальна щільність пакування в нескінченному просторі може змінюватися залежно від об’єму, у якому вона вимірюється, проблема зазвичай полягає в тому, щоб максимізувати середню або асимптотичну щільність, виміряну у достатньо великому об’ємі.
Для куль однакового діаметру у трьох вимірах найщільніше пакування займає приблизно 74% об’єму. Випадкове пакування однакових куль зазвичай має щільність близько 63,5%.

_(cropped).jpeg)
Коментарі
Дописати коментар