Перейти до основного вмісту

Числа Фібоначчі

 Числа Фібоначчі - це числова послідовність, у якій кожне наступне число дорівнює сумі двох попередніх. Послідовність починається з 0, далі йде 1, а далі за правилом кожне неступне число дорівнює сумі двох попередніх. Послідовність має вигляд: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Послідовність є рекурентною, тобто визначена сама через себе. Формула послідовності чисел Фібоначчі: $F_n = F_{n-1} +F_{n-2}$. Числа Фібоначчі зустрічаються в природі,  мистецтві та інших сферах.  Послідовність Фібоначчі тісно пов’язана із золотим перерізом – особливою пропорцією, яку часто називають божественною. Золотий переріз виникає, коли відношення між двома частинами будь-чого дорівнює приблизно 1,618. Це число позначають символом 𝜑. Нехай маємо відрізок, що поділений на дві частини — велику a і меншу b. Відрізок буде поділений у золотому перерізі, якщо відношення довжини всього відрізка до більшої частини дорівнює відношенню більшої частини до меншої, тобто: $\frac{a+b}{a}=\frac{a}{b}=\ph...

Марина В'язовська


Українка Марина В'язовська - друга жінка, що отримала престижну премію Філдса за розв'язання задачі, над якою роздумували ще Кеплер і Ньютон. Вручення відбулося 5 липня 2022 року. 
Марина В’язовська народилася в Києві в 1984 році, навчалась на механіко-математичному факультеті Київського національного університету імені Шевченка, у 2007 році отримала ступінь магістра у німецькому Кайзерслаутерні, а в 2013 року - ступінь доктора природничих наук у Боннському університеті. З 2017 року працює в Федеральній політехнічній школі Лозанни, у 2018 році отримала посаду професора, очолює кафедру теорії чисел.

Задача про пакування куль

Отримано розв'язок задачі про пакування куль у восьмивимірному просторі, відомої ще з 16 століття. Початково вона була пов'язана з військовою необхідністю придумати найбільш ефективний спосіб укладання гарматних ядер на кораблях британського військового флоту.

У подальшому задача потрапила до списку з 23 невирішених математичних задач. Про її розв'язання дискутували такі відомі науковці, як Йоган Кеплер та Ісаак Ньютон.

Типова задача пакування куль у тривимірному просторі полягає в тому, щоб знайти розташування, за якого вони заповнюють якомога більший простір. Частка простору, заповненого кулями, називається щільністю пакування. Оскільки локальна щільність пакування в нескінченному просторі може змінюватися залежно від об’єму, у якому вона вимірюється, проблема зазвичай полягає в тому, щоб максимізувати середню або асимптотичну щільність, виміряну у достатньо великому об’ємі.

Для куль однакового діаметру у трьох вимірах найщільніше пакування займає приблизно 74% об’єму. Випадкове пакування однакових куль зазвичай має щільність близько 63,5%.

Коментарі

Популярні дописи з цього блогу

Картопляний парадокс

 Парадокс - це твердження, яке, на перший погляд, є суперечливим, але насправді є вірне.  Сьогодні продемонструємо приклад такого парадоксу, який має назву "Картопляний парадокс". Фред приніс додому 100 кг картоплі, яка (у математичному сенсі) на 99% складається з води. Він залишає їх надворі на ніч, щоб вона трохи підсохла і на 98% складалася з води. Яка їх нова маса?  Відповідь вас здивує: нова маса – 50 кг. Доведення парадоксу: Якщо картопля на 99% складається з води, то суха маса становить 1%. Це означає, що у 100 кг картоплі міститься 1 кг сухої маси, яка не буде змінюватися внаслідок випаровування, оскільки випаровується лише вода. Для того, щоб картопля складалася з води на 98%, суха маса має становити 2% від загальної маси — удвічі більше, ніж було раніше. Кількість сухої маси 1 кг залишається незмінною, тому цього можна досягти лише шляхом зменшення загальної маси картоплі. Оскільки пропорцію сухої маси потрібно подвоїти, загальну масу картоплі потрібно зменшити ...

Арифметичні корені та їх геометричне зображення

 Відома теорема Піфагора дає можливість побудувати відрізок - гіпотенузу, довжина якого дорівнює кореню квадратному з суми квадратів двох чисел - довжин катетів. Якщо обидва катети дорівнюють 1, тоді довжина гіпотенузи дорівнює $ \sqrt{2}$. Для катетів, довжини яких 1 та 2, гіпотенуза дорівнює $\sqrt{5}$. А як побудувати відрізки, довжини яких дорівнюють іншим значенням коренів? Такі відрізки можна відкласти за допомогою геометричних побудов, як, наприклад, на рисунку. Окрім $\sqrt{2}$ і $ \sqrt{5}$ побудовано відрізок довжиною $ \sqrt{3}$. Інший рисунок містить відрізки, довжини яких є коренями послідовних натуральних чисел від 1 до 5. А чи можна побудувати за таким принципом відрізок, довжина якого дорівнює квадратному кореню з довільного натурального числа?

Тригонометрія та алгебра у стародавньому Єгипті

 Математичні знання у Стародавньому Єгипті були на високому рівні. Відомості про знання єгиптян ми отримуємо із стародавніх документів. Папірус Яхмоса або Математичний Райнд (1500 р. до н. е.) - найстаріший рукопис, що містить алгебраїчні та тригонометричні задачі. Рукопис свідчить, що єгиптяни використовували рівняння першого порядку та розв’язували їх кількома способами. Також вони знали квадратні рівняння та розв’язували їх. Їм також були відомі числові та геометричні послідовності та такі квадратні рівняння, як x 2 + y 2 = 100, y = 3/4 x, де x = 8, y = 6, Це рівняння походить від теореми Піфагора, a 2 = b 2 + c 2.  Єгиптяни також знали та використовували невідоме число у рівняннях. Цей стародавній математичний документ сьогодні зберігається у Британському музеї. Більше інформації про цей папірус можна знайти за посиланням .