У шкільному курсі геометрії вивчають властивості тіл обертання: циліндра, конуса та кулі. Але такі фігури можуть приховувати таємниці, у які складно повірити. Про таку властивість тіл обертання розкажемо у дописі. Візьмемо правильний циліндр (висота якого дорівнює діаметру) і впишемо у нього конус і кулю. Радіус циліндра дорівнює r , а висота 2 r . Тоді об'єм вписаного конуса, радіус основи якого r , а висота 2 r , дорівнює V_{con}=\frac{2}{3}\pi r^3 Об'єм кулі радіуса r V_{k}=\frac{4}{3}\pi r^3 Якщо додамо ці формули, то отримаємо об'єм циліндра V_{cyl}=2\pi r^3 Здається дивовижним, проте математично доведеним факт, що об'єм, який залишається незайнятим у циліндрі після вписання конуса, дорівнює об'єму кулі. І навпаки, незайнятий об'єм циліндра після вписання кулі дорівнює об'єму конуса.
Українка Марина В'язовська - друга жінка, що отримала престижну премію Філдса за розв'язання задачі, над якою роздумували ще Кеплер і Ньютон. Вручення відбулося 5 липня 2022 року.
Марина В’язовська народилася в Києві в 1984 році, навчалась на механіко-математичному факультеті Київського національного університету імені Шевченка, у 2007 році отримала ступінь магістра у німецькому Кайзерслаутерні, а в 2013 року - ступінь доктора природничих наук у Боннському університеті. З 2017 року працює в Федеральній політехнічній школі Лозанни, у 2018 році отримала посаду професора, очолює кафедру теорії чисел.
Задача про пакування куль
Отримано розв'язок задачі про пакування куль у восьмивимірному просторі, відомої ще з 16 століття. Початково вона була пов'язана з військовою необхідністю придумати найбільш ефективний спосіб укладання гарматних ядер на кораблях британського військового флоту.
У подальшому задача потрапила до списку з 23 невирішених математичних задач. Про її розв'язання дискутували такі відомі науковці, як Йоган Кеплер та Ісаак Ньютон.
Типова задача пакування куль у тривимірному просторі полягає в тому, щоб знайти розташування, за якого вони заповнюють якомога більший простір. Частка простору, заповненого кулями, називається щільністю пакування. Оскільки локальна щільність пакування в нескінченному просторі може змінюватися залежно від об’єму, у якому вона вимірюється, проблема зазвичай полягає в тому, щоб максимізувати середню або асимптотичну щільність, виміряну у достатньо великому об’ємі.
Для куль однакового діаметру у трьох вимірах найщільніше пакування займає приблизно 74% об’єму. Випадкове пакування однакових куль зазвичай має щільність близько 63,5%.
Коментарі
Дописати коментар