Парадокс - це твердження, яке, на перший погляд, є суперечливим, але насправді є вірне. Сьогодні продемонструємо приклад такого парадоксу, який має назву "Картопляний парадокс". Фред приніс додому 100 кг картоплі, яка (у математичному сенсі) на 99% складається з води. Він залишає їх надворі на ніч, щоб вона трохи підсохла і на 98% складалася з води. Яка їх нова маса? Відповідь вас здивує: нова маса – 50 кг. Доведення парадоксу: Якщо картопля на 99% складається з води, то суха маса становить 1%. Це означає, що у 100 кг картоплі міститься 1 кг сухої маси, яка не буде змінюватися внаслідок випаровування, оскільки випаровується лише вода. Для того, щоб картопля складалася з води на 98%, суха маса має становити 2% від загальної маси — удвічі більше, ніж було раніше. Кількість сухої маси 1 кг залишається незмінною, тому цього можна досягти лише шляхом зменшення загальної маси картоплі. Оскільки пропорцію сухої маси потрібно подвоїти, загальну масу картоплі потрібно зменшити ...
Число 𝛑 — математична стала, яка визначається як відношення довжини кола l до діаметра d : 𝛑 = l / d або як площа круга одиничного радіуса. Число 𝛑 є ірраціональним та записується у вигляді нескінченного десяткового дробу. Для простих розрахунків використовують декілька знаків після коми, наприклад, 3,14 або 3,1415926. Для розрахунку міжпланетних польотів фахівці NASA використовують лише 15 знаків після коми. А якщо взяти 40 знаків, тодіможна обчислити довжину кола розміром у видимий всесвіт з точністю, що буде меншою за діаметр атома водню. Практичні обчислення числа 𝛑 здійснюють за багатьма формулами. Найвідомішими є: формула Вієта: , формула Валліса: 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 ⋅ 8 7 ⋅ 8 9 ⋯ = � 2 , ряд Лейбніца: 1 1 − 1 3 + 1 5 − 1 7 + 1 9 − ⋯ = � 4 , формула Лейбніца: � = 4 − 8 ∑ � = 1 ∞ ( 1 ( 4 � − 1 ) ( 4 � + 1 ) ) . Більш складними є формула Ейлера: , інтеграл Пуассона або інтеграл Гаусса: ∫ − ∞ ∞ � − � ...
Коментарі
Дописати коментар