Перейти до основного вмісту

Публікації

Показано дописи з лютий, 2024

Числа Фібоначчі

 Числа Фібоначчі - це числова послідовність, у якій кожне наступне число дорівнює сумі двох попередніх. Послідовність починається з 0, далі йде 1, а далі за правилом кожне неступне число дорівнює сумі двох попередніх. Послідовність має вигляд: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Послідовність є рекурентною, тобто визначена сама через себе. Формула послідовності чисел Фібоначчі: $F_n = F_{n-1} +F_{n-2}$. Числа Фібоначчі зустрічаються в природі,  мистецтві та інших сферах.  Послідовність Фібоначчі тісно пов’язана із золотим перерізом – особливою пропорцією, яку часто називають божественною. Золотий переріз виникає, коли відношення між двома частинами будь-чого дорівнює приблизно 1,618. Це число позначають символом 𝜑. Нехай маємо відрізок, що поділений на дві частини — велику a і меншу b. Відрізок буде поділений у золотому перерізі, якщо відношення довжини всього відрізка до більшої частини дорівнює відношенню більшої частини до меншої, тобто: $\frac{a+b}{a}=\frac{a}{b}=\ph...

Число 𝛑

Число   𝛑 — математична стала, яка визначається як відношення довжини кола l до діаметра d : 𝛑   = l / d або як площа круга одиничного радіуса. Число 𝛑 є ірраціональним та записується у вигляді нескінченного десяткового дробу. Для простих розрахунків використовують декілька знаків після коми, наприклад, 3,14 або 3,1415926.  Для розрахунку міжпланетних польотів фахівці NASA використовують лише 15 знаків після коми. А якщо взяти 40 знаків, тодіможна обчислити довжину кола розміром у видимий всесвіт з точністю, що буде меншою за діаметр атома водню. Практичні обчислення числа 𝛑 здійснюють за багатьма формулами. Найвідомішими є:  формула Вієта: , формула Валліса: 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 ⋅ 8 7 ⋅ 8 9 ⋯ = � 2 , ряд Лейбніца: 1 1 − 1 3 + 1 5 − 1 7 + 1 9 − ⋯ = � 4 , формула Лейбніца: � = 4 − 8 ∑ � = 1 ∞ ( 1 ( 4 � − 1 ) ( 4 � + 1 ) ) . Більш складними є  формула Ейлера: , інтеграл Пуассона або інтеграл Гаусса: ∫ − ∞ ∞   � − � ...