У шкільному курсі геометрії вивчають властивості тіл обертання: циліндра, конуса та кулі. Але такі фігури можуть приховувати таємниці, у які складно повірити. Про таку властивість тіл обертання розкажемо у дописі. Візьмемо правильний циліндр (висота якого дорівнює діаметру) і впишемо у нього конус і кулю. Радіус циліндра дорівнює r , а висота 2 r . Тоді об'єм вписаного конуса, радіус основи якого r , а висота 2 r , дорівнює V_{con}=\frac{2}{3}\pi r^3 Об'єм кулі радіуса r V_{k}=\frac{4}{3}\pi r^3 Якщо додамо ці формули, то отримаємо об'єм циліндра V_{cyl}=2\pi r^3 Здається дивовижним, проте математично доведеним факт, що об'єм, який залишається незайнятим у циліндрі після вписання конуса, дорівнює об'єму кулі. І навпаки, незайнятий об'єм циліндра після вписання кулі дорівнює об'єму конуса.
Число 𝛑 — математична стала, яка визначається як відношення довжини кола l до діаметра d : 𝛑 = l / d або як площа круга одиничного радіуса. Число 𝛑 є ірраціональним та записується у вигляді нескінченного десяткового дробу. Для простих розрахунків використовують декілька знаків після коми, наприклад, 3,14 або 3,1415926. Для розрахунку міжпланетних польотів фахівці NASA використовують лише 15 знаків після коми. А якщо взяти 40 знаків, тодіможна обчислити довжину кола розміром у видимий всесвіт з точністю, що буде меншою за діаметр атома водню. Практичні обчислення числа 𝛑 здійснюють за багатьма формулами. Найвідомішими є: формула Вієта: , формула Валліса: 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 ⋅ 8 7 ⋅ 8 9 ⋯ = � 2 , ряд Лейбніца: 1 1 − 1 3 + 1 5 − 1 7 + 1 9 − ⋯ = � 4 , формула Лейбніца: � = 4 − 8 ∑ � = 1 ∞ ( 1 ( 4 � − 1 ) ( 4 � + 1 ) ) . Більш складними є формула Ейлера: , інтеграл Пуассона або інтеграл Гаусса: ∫ − ∞ ∞ � − � ...