Відома теорема Піфагора дає можливість побудувати відрізок - гіпотенузу, довжина якого дорівнює кореню квадратному з суми квадратів двох чисел - довжин катетів. Якщо обидва катети дорівнюють 1, тоді довжина гіпотенузи дорівнює $ \sqrt{2}$. Для катетів, довжини яких 1 та 2, гіпотенуза дорівнює $\sqrt{5}$. А як побудувати відрізки, довжини яких дорівнюють іншим значенням коренів? Такі відрізки можна відкласти за допомогою геометричних побудов, як, наприклад, на рисунку. Окрім $\sqrt{2}$ і $ \sqrt{5}$ побудовано відрізок довжиною $ \sqrt{3}$. Інший рисунок містить відрізки, довжини яких є коренями послідовних натуральних чисел від 1 до 5. А чи можна побудувати за таким принципом відрізок, довжина якого дорівнює квадратному кореню з довільного натурального числа?
Число 𝛑 — математична стала, яка визначається як відношення довжини кола l до діаметра d : 𝛑 = l / d або як площа круга одиничного радіуса. Число 𝛑 є ірраціональним та записується у вигляді нескінченного десяткового дробу. Для простих розрахунків використовують декілька знаків після коми, наприклад, 3,14 або 3,1415926. Для розрахунку міжпланетних польотів фахівці NASA використовують лише 15 знаків після коми. А якщо взяти 40 знаків, тодіможна обчислити довжину кола розміром у видимий всесвіт з точністю, що буде меншою за діаметр атома водню. Практичні обчислення числа 𝛑 здійснюють за багатьма формулами. Найвідомішими є: формула Вієта: , формула Валліса: 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 ⋅ 8 7 ⋅ 8 9 ⋯ = � 2 , ряд Лейбніца: 1 1 − 1 3 + 1 5 − 1 7 + 1 9 − ⋯ = � 4 , формула Лейбніца: � = 4 − 8 ∑ � = 1 ∞ ( 1 ( 4 � − 1 ) ( 4 � + 1 ) ) . Більш складними є формула Ейлера: , інтеграл Пуассона або інтеграл Гаусса: ∫ − ∞ ∞ � − � ...