Числа Фібоначчі - це числова послідовність, у якій кожне наступне число дорівнює сумі двох попередніх. Послідовність починається з 0, далі йде 1, а далі за правилом кожне неступне число дорівнює сумі двох попередніх. Послідовність має вигляд: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Послідовність є рекурентною, тобто визначена сама через себе. Формула послідовності чисел Фібоначчі: $F_n = F_{n-1} +F_{n-2}$. Числа Фібоначчі зустрічаються в природі, мистецтві та інших сферах. Послідовність Фібоначчі тісно пов’язана із золотим перерізом – особливою пропорцією, яку часто називають божественною. Золотий переріз виникає, коли відношення між двома частинами будь-чого дорівнює приблизно 1,618. Це число позначають символом 𝜑. Нехай маємо відрізок, що поділений на дві частини — велику a і меншу b. Відрізок буде поділений у золотому перерізі, якщо відношення довжини всього відрізка до більшої частини дорівнює відношенню більшої частини до меншої, тобто: $\frac{a+b}{a}=\frac{a}{b}=\ph...
Множення чисел можна виконувати різними методами: усно, в стовпчик, за допомогою калькулятора... Але відомий ще один дуже цікавий метод, винайдений у Японії, який базується на графіці. Для отримання добутку потрібно побудувати декілька ліні, полічити точки їх перетину і записати результат. Пояснимо його на прикладі. Нехай потрібно знайти добуток чисел 12 і 32. Число 12 містить 1 десяток і 2 одиниці, а 32 - 3 десятки і 2 одиниці. Зобразимо число 12 трьома лініями, проведеними під кутом зверху до низу, що відповідають 1 десятку та 2 одиницям. А число 32 зобразимо під іншим кутом та знизу до верху п'ятьма лініями: 3 за числом десятків і 2 за кількістю одиниць. Тепер порахуємо точки перетину ліній. Згпупувавши точки перетину та просумувавши їх кількості в групах, можемо записати результат множення. Таким чином, отримуємо, що добутком 12 і 32 є 384. Здається дивовижним, навіть магічним, проте японський метод множення має чітке математичне пояснення. Він базується на сумуванні добутків о...