Парадокс - це твердження, яке, на перший погляд, є суперечливим, але насправді є вірне. Сьогодні продемонструємо приклад такого парадоксу, який має назву "Картопляний парадокс". Фред приніс додому 100 кг картоплі, яка (у математичному сенсі) на 99% складається з води. Він залишає їх надворі на ніч, щоб вона трохи підсохла і на 98% складалася з води. Яка їх нова маса? Відповідь вас здивує: нова маса – 50 кг. Доведення парадоксу: Якщо картопля на 99% складається з води, то суха маса становить 1%. Це означає, що у 100 кг картоплі міститься 1 кг сухої маси, яка не буде змінюватися внаслідок випаровування, оскільки випаровується лише вода. Для того, щоб картопля складалася з води на 98%, суха маса має становити 2% від загальної маси — удвічі більше, ніж було раніше. Кількість сухої маси 1 кг залишається незмінною, тому цього можна досягти лише шляхом зменшення загальної маси картоплі. Оскільки пропорцію сухої маси потрібно подвоїти, загальну масу картоплі потрібно зменшити ...
Математичні знання у Стародавньому Єгипті були на високому рівні. Відомості про знання єгиптян ми отримуємо із стародавніх документів. Папірус Яхмоса або Математичний Райнд (1500 р. до н. е.) - найстаріший рукопис, що містить алгебраїчні та тригонометричні задачі. Рукопис свідчить, що єгиптяни використовували рівняння першого порядку та розв’язували їх кількома способами. Також вони знали квадратні рівняння та розв’язували їх. Їм також були відомі числові та геометричні послідовності та такі квадратні рівняння, як x 2 + y 2 = 100, y = 3/4 x, де x = 8, y = 6, Це рівняння походить від теореми Піфагора, a 2 = b 2 + c 2. Єгиптяни також знали та використовували невідоме число у рівняннях. Цей стародавній математичний документ сьогодні зберігається у Британському музеї. Більше інформації про цей папірус можна знайти за посиланням .